Effect of glucose on intercellular junctions of cultured human peritoneal mesothelial cells.

نویسندگان

  • T Ito
  • N Yorioka
  • M Yamamoto
  • K Kataoka
  • M Yamakido
چکیده

During continuous ambulatory peritoneal dialysis, the peritoneum is directly and continuously exposed to unphysiologic peritoneal dialysis fluid; the resulting mesothelial damage has been suggested to cause loss of ultrafiltration and dialysis efficacy. The present study investigated the effect of a high glucose concentration on cultured human peritoneal mesothelial cells to clarify the cause of decreased dialysis efficacy during prolonged peritoneal dialysis. High glucose caused a concentration-dependent decrease in cell proliferation, damage to the intercellular junctions, and excess production of transforming growth factor-beta (TGF-beta). The levels of intercellular junctional proteins (ZO-1, E-cadherin, and beta-catenin) were decreased, and immuno-staining by anti-ZO-1 and anti- beta-catenin antibodies became weaker and often discontinuous along the cell contour. Mannitol had similar but weaker effects at the same osmolality, and an anti-TGF-beta neutralizing antibody reduced the effects of high glucose. Therefore, these effects were induced not only by glucose itself but also by hyperosmolality and by a glucose-induced increase of TGF-beta. These findings suggest that the peritoneal mesothelium is damaged by prolonged peritoneal dialysis using high glucose dialysate and that impairment of the intercellular junctions of peritoneal mesothelial cells by high glucose dialysate induces peritoneal hyperpermeability and a progressive reduction in dialysis efficacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aberrant Expression of Cx43 Is Associated with the Peritoneal Metastasis of Gastric Cancer and Cx43-Mediated Gap Junction Enhances Gastric Cancer Cell Diapedesis from Peritoneal Mesothelium

The process of peritoneal metastasis involves the diapedesis of intra-abdominal exfoliated gastric cancer cells through the mesothelial cell monolayers; however, the related molecular mechanisms for this process are still unclear. Heterocellular gap-junctional intercellular communication (GJIC) between gastric cancer cells and mesothelial cells may play an active role during diapedesis. In this...

متن کامل

Viability of, and basic fibroblast growth factor secretion by, human peritoneal mesothelial cells cultured with various components of peritoneal dialysis fluid.

In patients on long-term continuous ambulatory peritoneal dialysis (CAPD), peritoneal dysfunction is considered to be due to the loss of peritoneal mesothelial cells and to subsequent peritoneal fibrosis and neovascularization. Our aim in the present study was to clarify the role of various components of peritoneal dialysis fluid in the occurrence of peritoneal dysfunction in CAPD patients. We ...

متن کامل

مقایسه سلول‌های مزانشیمی مغز استخوان و سلول‌های مزوتلیومی مایع سروزی ازنظر میزان بیان مولکول‌های کمپلکس سازگاری نسجی اصلی (MHC)

Abstract Background: Mesothelium is composed of a single layer of mesothelial cells attached to a thin basement membrane supported by subserosal connective tissue it plays an important role in homeostasis, wound healing, fluid transport and inflammation. The introduction of peritoneal dialysis (PD) as a modality of renal replacement therapy has provoked much interest in the biology of perito...

متن کامل

Glucose and prednisolone alter basic fibroblast growth factor expression in peritoneal mesothelial cells and fibroblasts.

The mechanism of peritoneal fibrosis in patients on continuous ambulatory peritoneal dialysis is poorly understood. The production of basic fibroblast growth factor (bFGF) by human peritoneal mesothelial cells cultured in high glucose medium was investigated, and the behavior of peritoneal fibroblasts, as well as the inhibitory effect of prednisolone, was assessed. Reverse transcriptase-PCR and...

متن کامل

3,4-Dideoxyglucosone-3-ene as a mediator of peritoneal demesothelization.

BACKGROUND The mesothelium contributes significantly to the functional, structural and homeostatic properties of the peritoneum. Bioincompatible peritoneal dialysis solutions contribute to mesothelial cell loss during chronic peritoneal dialysis. Cell death has been implicated in mesothelial cell loss, but the molecular mechanisms have not been adequately characterized. We now report the modula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 11 11  شماره 

صفحات  -

تاریخ انتشار 2000